Автор: Ричарт В., Коэльо П.Л. Дата выхода: 30 сентября 2015 года Формат: 148 * 210 мм Бумага: офсетная Обложка: Мягкая обложка Объем, стр.: 302 ISBN: 978-5-97060-330-7 Вес, гр.: 500
Применение машинного обучения для лучшего понимания природы данных – умение, необходимое любому современному разработчику программ или аналитику. Python – замечательный язык для создания приложений машинного обучения. Благодаря своей динамичности он позволяет быстро производить разведочный анализ данных и экспериментировать с ними. Обладая первоклассным набором библиотек машинного обучения с открытым исходным кодом, Python дает возможность сосредоточиться на решаемой задаче и в то же время опробовать различные идеи.
Книга начинается с краткого введения в предмет машинного обучения и знакомства с библиотеками NumPy, SciPy, scikit-learn. Но довольно быстро авторы переходят к более серьезным проектам с реальными наборами данных, в частности, тематическому моделированию, анализу корзины покупок, облачным вычислениям и др.
Издание рассчитано на программистов, пишущих на Python и желающих узнать о построении систем машинного обучения и научиться извлекать из данных ценную информацию, необходимую для решения различных задач.
Книга рассчитана на программистов, пишущих на Python и желающих узнать о построении систем машинного обучения с помощью библиотек с открытым исходным кодом. Мы рассматриваем основные модели машинного обучения на примерах, взятых из реальной жизни. Эта книга будет полезна также специалистам по машинному обучению, желающим использовать Python для создания своих систем. В главе 1 «Введение в машинное обучение на языке Python» читатель знакомится с основной идеей машинного обучения на очень простом примере. Но, несмотря на простоту, в этом примере имеет место опасность переобучения.
В главе 2 «Классификация в реальной жизни» мы используем реальные данные, чтобы продемонстрировать классификацию и научить компьютер различать различные классы цветов. В главе 3 «Кластеризация – поиск взаимосвязанных сообщений» мы узнаем об эффективности модели набора слов, с помощью которой сумеем найти похожие сообщения, не «понимая» их смысла.
В главе 4 «Тематическое моделирование» мы не станем ограничиваться отнесением сообщения только к одному кластеру, а свяжем с ним несколько тем, поскольку политематичность характерна для реальных текстов. В главе 5 «Классификация – выявление плохих ответов» мы узнаем, как применить дилемму смещения-дисперсии к отладке моделей машинного обучения, хотя эта глава посвящена в основном использованию логистической регрессии для оценки того, хорош или плох ответ пользователя на заданный вопрос. В главе 6 «Классификация II – анализ эмоциональной окраски» объясняется принцип работы наивного байесовского классификатора и описывается, как с его помощью узнать, несет ли твит положительный или отрицательный эмоциональный заряд. В главе 7 «Регрессия» объясняется, как использовать классический, но не утративший актуальности метод – регрессию – при обработке данных. Вы узнаете и о более сложных методах регрессии, в частности Lasso и эластичных сетях. В главе 8 «Рекомендование» мы построим систему рекомендования на основе выставленных потребителями оценок. Мы также узнаем, как формировать рекомендации, имея только данные о покупках, безо всяких оценок (которые пользователи выставляют далеко не всегда). В главе 9 «Классификация по музыкальным жанрам» мы предположим, что кто-то сознательно внес хаос в нашу огромную коллекцию музыкальных произведений, и единственная надежда навести порядок – поручить машине их классификацию. Как выяснится, иногда лучше довериться чужому опыту, чем создавать признаки самостоятельно. В главе 10 « Машинное зрение» мы применим методы классификации к обработке изображений, выделяя признаки из данных. Мы также увидим, как с помощью этих методов можно находить похожие изображения в наборе. Из главы 11 «Понижение размерности» мы узнаем о методах, позволяющих уменьшить объем данных, чтобы алгоритмы машинного обучения могли с ними справиться. В главе 12 «Когда данных больше» мы рассмотрим некоторые подходы, позволяющие успешно обрабатывать большие наборы данных, задействуя несколько ядер или вычислительные кластеры. Мы также познакомимся с основами облачных вычислений (на примере служб Amazon Web Services).
Вариант 1: Электронная доставка на email
После оплаты заказа на сайте, вам приходит ссылка на курс/тренинг/материалы на почту указанную в заказе.
Некоторые объекты, размещенные на сайте, являются интеллектуальной собственностью компании "Все онлайн курсы и тренинги vsekursi24.ru". Использование таких объектов установлено действующим законодательством РФ.
На сайте "Все онлайн курсы и тренинги vsekursi24.ru" имеются ссылки, позволяющие перейти на другие сайты. Компания "Все онлайн курсы и тренинги vsekursi24.ru" не несет ответственности за сведения, публикуемые на этих сайтах и предоставляет ссылки на них только в целях обеспечения удобства для посетителей своего сайта.
Личные сведения и безопасность
Компания "Все онлайн курсы и тренинги vsekursi24.ru" гарантирует, что никакая полученная от Вас информация никогда и ни при каких условиях не будет предоставлена третьим лицам, за исключением случаев, предусмотренных действующим законодательством Российской Федерации.
В определенных обстоятельствах компания "Все онлайн курсы и тренинги vsekursi24.ru" может попросить Вас зарегистрироваться и предоставить личные сведения. Предоставленная информация используется исключительно в служебных целях, а также для предоставления доступа к специальной информации.
Личные сведения можно изменить, обновить или удалить в любое время в разделе "Аккаунт" > "Профиль".
Чтобы обеспечить Вас информацией определенного рода, компания "Все онлайн курсы и тренинги vsekursi24.ru" с Вашего явного согласия может присылать на указанный при регистрации адрес электронный почты информационные сообщения. В любой момент Вы можете изменить тематику такой рассылки или отказаться от нее.
Как и многие другие сайты, "Все онлайн курсы и тренинги vsekursi24.ru" использует технологию cookie, которая может быть использована для продвижения нашего продукта и измерения эффективности рекламы. Кроме того, с помощь этой технологии "Все онлайн курсы и тренинги vsekursi24.ru" настраивается на работу лично с Вами. В частности без этой технологии невозможна работа с авторизацией в панели управления.
Сведения на данном сайте имеют чисто информативный характер, в них могут быть внесены любые изменения без какого-либо предварительного уведомления.
Чтобы отказаться от дальнейших коммуникаций с нашей компанией, изменить или удалить свою личную информацию, напишите нам через форму обратной связи