• Напишите нам
  • [email protected]
Перезвоните мне
Круглосуточно
0 Избранное
0 Сравнение
0 Корзина

Прикладное глубокое обучение (Умберто Микелуччи)

Бесплатная
Доставка
Гарантия
Возврата
Онлайн
Поддержка
178 рублей
Подробнее

[?IMG]?

Затронуты расширенные темы глубокого обучения: оптимизационные алгоритмы, настройка гиперпараметров, отсев и анализ ошибок, стратегии решения типичных задач во время тренировки глубоких нейронных сетей. Описаны простые активационные функции с единственным нейроном (ReLu, сигмоида и Swish), линейная и логистическая регрессии, библиотека TensorFlow, выбор стоимостной функции, а также более сложные нейросетевые архитектуры с многочисленными слоями и нейронами.
Показана отладка и оптимизация расширенных методов отсева и регуляризации, настройка проектов машинного обучения, ориентированных на глубокое обучение с использованием сложных наборов данных. Приведены результаты анализа ошибок нейронной сети с примерами решения проблем, возникающих из-за дисперсии, смещения, переподгонки или разрозненных наборов данных. По каждому техническому решению даны примеры решения практических задач.